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A scalar form of the ideal MHD energy principle is shown to provide a more accurate and 
efftcient numerical method for determining the stability of an axisymmetric toroidal 
equilibrium than the usual vector form. Additional improvement is obtained by employing a 
class of straight magnetic field line flux coordinates which allow for an optimal choice of the 
poloidal angle in the minor cross section of the torus. The usefulness of these techniques is 
illustrated by a study (using a new code, PEST 2) of the convergence properties of the finite 
element Galerkin representation in tokamak and spheromak geometries, and by the accurate 
determination of critical /I values for ballooning modes. 

1. INTRODUCTION 

The achievement of large /3 values (p z the ratio of the plasma pressure to the 
pressure of the externally applied magnetic field) is critical to the success of a number 
of toroidal plasma configurations as economically viable fusion reactors. Among the 
factors which can limit B in such devices, the existence of ideal MHD instabilities is 
one of the most fundamental. In recent years considerable progress has been made on 
this problem through a combination of computational and analytical studies. 

Within the framework of the ideal MHD model [ 11, numerical methods [2-71 have 
proved particularly useful in studying p limitations imposed by linear instabilities in 
axisymmetric toroidal systems. By a careful study of the unstable eigenfunctions [8], 
simplified analytic theories of the most limiting internal modes (ballooning 
instabilities) have been developed, and these have in turn been solved by simple 
numerical calculations 19-l 11. The combination of these computational tools has 
enabled detailed parameter studies of the ranges of ideal MHD stable tokamak 
operation [ 121, and together with recently developed toroidal transport codes [ 13-141 
provides the capability of studying a wide variety of envisaged tokamak reactor 
schemes. 

After a number of years of extensive testing, comparison, and production-running, 
the complex 2-D Galerkin stability packages such as PEST and ERATO have 
developed into robust and efficient tools and are used on a daily basis in many major 
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fusion laboratories for machine design, analysis of experimental results, and for 
advanced confinement studies. Nevertheless, ‘there are computational limitations 
inherent in their implementation which make the application to various aspects of 
ideal MHD stability inaccurate, overly time consuming, or impossible. With the 
PEST code, for example, the choice of representation of the displacement vector 
prevents a study of reversed field configurations and makes a study of spheromak 
configurations difficult. Better representations undoubtedly exist. The original 
representation also contributes to pollution [ 151 of the MHD spectrum because the 
finite element expansion chosen forces incompressibility only to second order in the 
inverse aspect ratio. Moreover, the storage requirements of the original codes are very 
large, so that large toroidal mode numbers (n 2 10) would not be accurately treated. 

For large n ballooning modes, this problem has been addressed in the finite 
element code ERATO by an explicit extraction of the rapidly varying ballooning 
phase factor from the perturbation [16], In the Fourier representation of PEST 1 a 
similar result would have been effected by simply shifting the range of Fourier 
components in the representation. Since excellent agreement [lo] at intermediate 
values of n can be obtained between the two-dimensional ideal MHD methods of this 
paper and the one-dimensional WKB ballooning mode approach, however, it seems 
more appropriate to treat the very short wavelength limit by the latter. This seems 
especially so since in this limit additional physical effects (such as finite ion-Larmor 
radius) become important and these can be handled in a straightforward manner in 
the high-n ballooning mode limit [ 171. 

A more fundamental difficulty with these codes arises in the accurate deter- 
mination of the point of marginal stability (needed to determine the critical p, for 
example). This has normally been done by computing the growth rate of the most 
unstable discrete mode for a sequence of unstable equilibria and then finding the 
marginal equilibrium by extrapolation to zero growth rate. A preferable 
computational method would involve interpolation, using values for the growth rate 
on both sides of w* = 0. Since the slow magnetosonic and shear Alfven continua can 
be shown analytically to appear on the stable side of the spectrum, however, it is 
virtually impossible to do this numerically because of the difficulty of distinguishing 
between discrete and continuum modes. This is especially difficult if the numerical 
method destabilizes the continuum [IS]. The problem is further aggravated because 
the dependence of growth rate on p is nonanalytic at the marginal point, so that the 
growth rate can vary quite slowly, making extrapolation inaccurate. In this case it 
may even be difficult to establish definitively that stabilization occurs at any finite/?. 

Although these difficulties warranted attention in their own right for very accurate 
MHD stability analyses, the principle motivation for the work reported here is the 
need to extend the study of linear instabilities from ideal to resistive MHD models. 
Resistive instabilities may be effectively treated as a boundary layer calculation when 
it becomes necessary to solve the ideal MHD Euler-Lagrange equations at marginal 
stability in the regions between resistive boundary layers. Since the ideal MHD 
solutions are singular as we approach rational surfaces, it is clear that an extremely 
accurate numerical treatment of the ideal MHD equations is required. The 
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development of such a method is the subject of this paper. Although there are 
certainly some new limitations (the absence of an estimate of the real physical growth 
rate is the most serious shortcoming), the method resolves most of the difficulties 
with the first generation stability codes mentioned above, and in most cases 
represents an order of magnitude improvement in the accuracy and computer time 
required. 

This paper is arranged in the following way: In Section 2 we briefly describe the 
MHD equilibrium and present a class of generalized axisymmetric toroidal coor- 
dinates which can greatly improve the representation of various MHD instabilities. 
Section 3 is devoted to presenting a scalar form of the 6W functional using a model 
kinetic energy normalization which can be used to study ideal MHD modes. We 
present the weak form of the equations (based on the Galerkin expansion method) 
and briefly describe the spectrum of the reduced normal mode equations. Several 
applications of the approach to tokamak and spheromak geometries which indicate 
the accuracy and efficiency of this method are given in Section 4. In Section 5 we 
summarize the principal conclusions of this work. 

2. TOROIDAL MHD EQUILIBRIA AND FLUX COORDINATES 

2.1. Equilibrium 

We consider stationary MHD equilibria satisfying 

JxB=Vp, VxB=J, and V.B=O. (1) 

The most general axisymmetric toroidal equilibrium field can then be written in the 
form 

B = Vd x VW + g(w) Vd, (2) 

where 27ryl is the poloidal flux within a magnetic surface, 

,=&jdrB.VO, (3) 

$ is the geometrical toroidal angle (Fig. l), and 0 is an arbitrary angular coordinate 
varying between 0 and 271 after one complete circuit in the poloidal direction. If p(v) 
and g(w) are specified, an axisymmetric toroidal equilibrium can be determined 
numerically [ 191 by solution of the Grad-Shafranov equation 

A*y s X’V . (1/X2) Vy/ = -(X2@ + gg’). (4) 

Here, and throughout, a prime denotes the partial derivative with respect to w. 
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FIG. Coordinate systems: cylindrical (x, z, 0, flux coordinates (w, 0, 0, and local polar (r, /3,)). 

2.2. Flux Coordinate Systems 

Both analysis and computation are facilitated by an appropriate choice of coor- 
dinate system. In particular, it is essential to use a poloidal flux label as one coor- 
dinate since the mathematical form of the Euler-Lagrange equations for small pertur- 
bations is different in directions perpendicular and tangential to these surfaces. We 
find it convenient to use the special label w of Eq. (2), but it is clearly straightforward 
to transform to any other flux surface label by a simple one-dimensional change of 
variable. 

Previous work has shown the advantages both numerically [4] and analytically 
[ 111 of choosing 0 and a general toroidal angle [ so that the magnetic field lines on 
each magnetic surface are straight in (@, [) space. For this to hold we must have for 
any toroidal MHD equilibrium [20], 

B=V[xVyl+q(ty)VyxVO, (5) 

where q is the “safety factor.” Then, from J l Vty = 0, we find 

qV~(IVWI*V,~)=V~(IVyll*V,~)~ (6) 

where the surface operator 

v, = (I - VW VI/l/l Vyl12) * v, (7) 

with I being the unit dyadic. Now, since V . (] Vwl* V,) is a well-behaved elliptic 
partial differential operator containing no w derivatives, Eq. (6) determines O(x) (or 
C(x)) (up to a function of w) on each magnetic surface given r(x) (or O(x)). We note 
that 

B . V = ,P-‘(~3~ + 480, (8) 
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where the Jacobian .Y is defined by 

.P-‘~vyxvo.v~, (9) 

showing that the field lines are straight since L - q0 is constant on a field line. 
Specializing to axisymmetric equilibrium configurations, we choose 0 such that 

vo.vg=o. (10) 

Then we can write more specifically 

v * (IVY/l2 V,) =Jy&(s; lVw12 lV,@12 &J + lVwlZ Iv$l’a:, 

with 

(11) 

Most previous numerical stability work, and specifically PEST 1, has employed the 
toroidal angle 4 as one coordinate. Substituting [= # into Eq. (6), using Eqs. 
(lo)-(12) we find 

or, from Eq. (12), 

&3(~lW IV,@l> = 09 (13) 

cpp = x’/4w), (14) 

showing that the PEST 0 = 0, (as defined by Eq. (14)) is the proper choice, 
producing straight field lines if d is used as the toroidal angle. These simple PEST 
coordinates, however, do not necessarily result in the construction of a numerical 
mesh which gives optimal weighting to the regions of bad magnetic field line 
curvature where, for example, ballooning modes have their maximum amplitude. 

More flexibility can be achieved if we use Eq. (6) to construct a generalized 
toroidal angle [ after first specifying the angle 0. To accomplish this we introduce the 
periodic function 6(v/, 0) on each magnetic surface such that, 

(15) 

Note that this implies Y = S,. Equation (6) now yields 

a,&w, 0) = U(w)fl/X2) - 1, (16) 

where the surface constant 

f(w) = g(vMv)- (17) 
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We note from Eq. (17) that since 6 is a periodic function in 0 we must have 

fwv-/x’> = 19 (18) 

where (*em) denotes an average over 0. 
In practice, it is convenient to fix the angle 0 by specifying the Jacobian. Equation 

(17) then determines [ on each magnetic surface. It is interesting to note that the 
PEST 0, O,, is simply related to any prespecified 0 through 

since 

0, = 0 + &l/l, O), (19) 

l-p’ = VW x vo, * V# = vl+ll x vo ’ V#( 1 + 6,) = f(l//)/X’, 

from Eq. (17), in agreement with Eq. (14) with f(v) = a(w). 
The general toroidal coordinate system (IV, 0, [) constructed here is not orthogonal 

and its metric is more complicated than the simpler PEST coordinates since Vty - VC 
and VO . V[ are not zero and IV</' # l/X*. These, however, require little extra 
computation because of Eq. (15). The coordinate [ is still ignorable with respect to 
axisymmetric equilibrium quantities, and the stability analysis can be reduced to the 
study of a single mode varying as exp (in <). 

2.3. Numerical Mapping of Equilibria 

The procedure for construction of a (w, 0) mesh is essentially identical to that of 
mapping an equilibrium into PEST coordinates [4]. First, Eq. (4) is solved 
numerically for I+ Then, we take X to be of the form 

aK Z) = x’/+Y> I Vwl’, (20) 

where a(w) is given by the requirement that 0 increase by 2n during one poloidal 
circuit and we specify the integers i and j. 

Equation (12) yields the basic mapping equation 

dO/ds =X/Y- ( VwI, (21) 

where ds = r* ] VyI ]r - VyI - ’ d/l is the element of arc length along a constant w, 4 
line in a local polar coordinate system (r, /I) centered on the magnetic axis. Thus 

and from Eq. (18), 

f(w) = 2~ I f dGVVI)-‘- (23) 
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Constant v surfaces are accurately constructed using the contouring equations 

a& = @‘/I r l WI) viz (24) 

and 

a,2 = -(r’/lr * VIyl) I/lx. (25) 

The quantity 6 associated with the angle [ is computed simultaneously using Eq. (16) 
in the form 

a,6 = (fY-/x’ - 1)/a, 0. (26) 

Details of the computation are given in [4]. 
As an example, we show three different equally spaced coordinate meshes for the 

simple, almost constant current, analytic equilibrium [7, 211. 

y = (X2 - R2)2 + E2X2Z2. (27) 

Figure 2a, with i = 2, j = 0 presents PEST coordinates, showing the concentration of 
lines of constant 0 near the corners of the D and on the small major radius side of 
the magnetic axis. Figure 2b shows a Hamada coordinate system with i = j = 0, 
while Fig. 2c illustrates an equal arc length system, i = j = 1. The latter coordinate 
system clearly distributes grid points more uniformly over the plasma region. 

FIG. 2. Equally spaced (w, 6’) meshes for (a) PEST, (b) Hamada, and (c) equal arc length coordinate 
system for the equilibrium of Eq. (27) with R = 1, E = l/2, q = 1.2, qedge = 2.1. 
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3. FORMULATION OF THE STABILITY CALCULATIONS 

3.1. Scalar Form of the Normal Mode Equations 

Solutions to the linearized ideal MHD equations can be found by extremizing the 
Lagrangian for small perturbations about the equilibrium state [ 11. Thus we 
determine the Lagrangian displacement, 

for which the functional 

5(x, t) = t(x) e’“‘, (28) 

L = w2q*, 5) - swc*, 51, 

is stationary. Here the kinetic energy functional 

(29) 

(30) 

and the change in potential energy, 

26W(t*, “-I dt[lQ + (t. Vw)J x Vv/lVw12 I2 + YP IV. Cl’ - 2u15 l WI21 
P 

. + 
1 

dr]V x A]‘. (31) ” 

Here Q z V x (5 x B), A is the vector potential for the perturbed magnetic field in 
the vacuum and 

2U= 2p’rcti + 02B2/]V~12 -B . V[a(s . Vw)/]Vw]‘] + aq’/4 

In the last expression we have defined 

srvr-qV@, 

o = J l B/B2 = -g’ - gp’/B2, 

and the field line curvature 

K - B/B l V(B/B) = K+ Vyl + K, S, 

with 

(32) 

(33) 

(34) 

(35) 

Kr = p//B’ + 8,(B2)/2B2 + [Vi//. W/X2 - g(qs)‘/Y-] 8,(B2)/2B4. (36) 

Following previous work, we decompose the displacement vector as 

5 = r*B x s/B2 + irB x Vv/B2 + irbs x VylIB2, 

noting that B = s x VW. 

(37) 
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In general, the normal mode equations which result from carrying out the 
extremization of Eq. (29) involve each of the three components of 5. Although special 
consideration was taken in previous work to project 5 into polarizations which effect 
a partial diagonalization of 6 W, the eigenfunction corresponding to a typical unstable 
normal mode will contain contributions from all three components which must be 
computed in order to obtain a physically meaningful growth rate. If, however, as is 
often the case, we are interested primarily in the accurate determination of marginal 
stability and not in the exact growth rates and eigenfunctions, considerable 
simplification of Eq. (29) is possible by analytically minimizing 6W wth respect to r” 
and rb, thus eliminating them from the functional. This exercise was first carried out 
by Bineau (221. 

Instead of the complete kinetic energy normalization of Eq. (30), we therefore 
employ the model normalization 

with anisotropic density, p= p Vty VW, so that inertia affects displacements only in 
the direction normal to a magnetic surface. Displacements within a surface, however, 
still minimize 6W, even at finite growth rate. Such a nonphysical density profoundly 
modifies the nature of the continuous spectrum (see Section 3.2), but leaves 
unchanged the number of unstable discrete modes. As shown in the Appendix, 
Eq. (31) can be reduced to 

26W(<*, l) =J dz [-I--‘(PO* A,‘~-‘P< + IB - Vt/*//Vwl* 
P 

+YP(\(J?)‘I*/(.~)~)- 2UltI’ + 26Wi’,,6,,,] +,( dz IV x Ai*, (39) 
U 

where 

P<=ZV. [(B. V<Vy-J x Vw5)/lVwl'], (40) 

A,= V.V,, (41) 

and unambiguously, c= 5 . VW = r*, since it is well known that the change in 
potential energy in the vacuum can be reduced to a quadratic form involving only < 
on the plasma-vacuum surface. The last term in the first expression of the right-hand 
side in Eq. (39), given explicitly below in Eq. (45), contributes only to axisymmetric 
perturbations (n = 0) and represents an internal “inductive” stabilization which arises 
because an axisymmetric compressible Lagrangian displacement causes additional 
perturbed current fluxes. 

In terms of the general (w, 0, C) coordinate system of the last section, explicit 
forms for the quantities in Eqs. (39)-(41) are 
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2u = -p’(P)‘/P - (X’p’ + gg’)(Y-/P)‘p- + (X”p’ + gg’)‘/(X’ ) Vyq) 

- s-la,[2-(X2p’ + gg’) vy * VO/(A? ]Vy~‘)], (42) 

pr = (a, + @,K + 4’aJ + &WY * wta, + q~,)wlvwl’ 

+ (X’P’ + @?%/I W121 

(43) 

(44) 

q.q SW;“, = g2 I(.n/x2)‘12/(Y-/x2) + 1(X lVw12 rl/x’> + (f-W * ve(a,r>/x’) 

+ v-t&%? + ~‘P’)W2)12/(f IVwl’/~‘>. (45) 

In obtaining these expressions, it is useful to note the flux coordinate form of Eq. (4), 

ao(~~~v~~2/x2) + as(xvv. w/x*)= -.Y-(x~PJ + ggyx2. (46) 

The problem of determining the instability of a toroidal equilibrium is then 
equivalent to demonstrating the existence of solutions 4, normalized according to 
Eq. (38), which make Eq. (39) negative. This is obvious since the energy principle 
attaches significance only to the sign of 6W-the point of marginal stability is not 
affected by the change in normalization. Clearly the eigenvalues and eigenfunctions 
of the normal mode equations corresponding to this reduced problem are not 
equivalent to those found by extremizing Eq. (29). But the point of marginal stability 
is the same, and for many applications, expecially when the unstable eigenfunction is 
a slowly varying function of w, the behavior of c. Vty obtained from the reduced 
problem is qualitatively very similar to that obtained with the full normalization. 

3.2. Spectrum of the Reduced Normal Mode Equations 

The spectrum of perturbations 5 which extremize Eq. (39) with Eq. (38) is 
considerably different from the usual ideal MHD spectrum [23,24]. Physically, the 
model kinetic energy normalization has restricted the nonaxisymmetric perturbations 
to incompressible modes, thereby removing the slow magnetosonic continuum 
branch, while the subsequent elimination of B x VW . S has eliminated the fast 
magnetosonic stable discrete part of the spectrum. The set of solutions remaining 
include both discrete modes and a continuum corresponding to the usual shear Alfven 
spectrum, but displaced “upwards” so that there is a gap between the marginal point 
o2 = 0 and the lowest value of o* in the continuum (assuming Mercier stability). 

Information about the nature of the reduced normal modes can be obtained by 
examining their asymptotic behavior near the singular surfaces of the corresponding 
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Euler-Lagrange equations. These occur on the equilibrium magnetic surfaces 
(w = w,) where B l V< approximately vanishes, i.e., surfaces for which the safety 
factor q is rational (l/n). In addition to the class of square integrable regular 
solutions, we find asymptotically singular solutions of the form 

( - x$+ exp i(10 - nC), (47) 

where x 3 II/ - 1c/$ and 

p* = -4 f (-DI - I?o~)“~. (48) 

Here D,, the usual measure of localized ideal MHD interchange stability [20, 251 
(Mercier’s criterion), is taken to be negative and 

r= (P’/q’2)(9-~2/lvY12)(~). (49) 

There are four such solutions in the vicinity of each rational surface-one for each 
value of p and one for each of the generalized functions [26], 

xc = jxy, if x 5 0, 

= - 0, if x >< 0. 
(50) 

Away from marginal stability (w’ = 0) we discard the most negative root for p since 
it does not satisfy the finite model kinetic energy normalization 

The inclusion of these “big” singular solutions is, however, essential to a proper 
treatment of the ideal MHD solutions at marginal stability required in a boundary 
layer treatment of resistive modes. This will be the subject of future work. 

From Eq. (48) we see that the continuum reaches down to the point of = 
] D,(/r > 0, giving the possibility of avoiding the numerical difficulties associated with 
accurately predicting marginal stability criteria as discussed earlier in this paper. 
When cc2 < (ID11 - i)/r, the small singular solution vanishes asymptotically in the 
vicinity of the singular surface and a weak solution can be represented [27] by a 
Galerkin expansion in terms of functions belonging to the space X’. Otherwise, for 
(IOIl - a)/r < UJ* < IDll/I’, there will be a weak singularity (c is square integrable, 
but <’ is not) for unstable modes near the marginal point (e.g., the internal m = 1 
kink mode) for which special attention is required. The proper representation of these 
modes are also to be reported on elsewhere [28]. 
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3.3. Galerkin Representation of the Reduced Normal Mode Equations 

Following our previous work, we introduce the mixed finite-element Fourier 
expansion, 

ILI M 
t(w 0, 4) = C C tr,u,(v) ei(‘e-“r) (52) 

I=-IL1 m=l 

into Eqs. (38) and (39). The weak form of the normal mode equations can then be 
written as the generalized eigenvalue problem, 

with 

2 W,‘[m’m = W= j-;” dv [u,,P 

and 

2K,<,, <,,, = (2n)= {O”d~u,.p~pS,.,u,. (55) 

Here 

k.k’ 

y,,,(V) = c (I’ - nq) G,vc Q/c, + fl+%o~ 
k 

Z,,,(w) = (l’ - ns)(l- nq) GIr, + Z~gh, 

with 

and 

G;,’ = n2E,,, + nq(l’ + 1) V,,, + l’lF,,,, 

QrJr = I’(l- nq) A,,, -t n(l- nq) D,,, + I/B,,, + nqU,,, + ng’Clrllf 

+ wf’4df9 

A ,,, = (I’ 1 i VW l VO/l Vy~j’ 1 I), 

B I’[= 0’ I kg + X2P’M b12 IO9 
C,!, = (I’ 1 6, I l), 
D,,, = (l’ I i[(qS’) + q VW - V@ &/I WI2 1 IO, 
u I’/= (I’ I hf + X2P’)43/l WI2 197 

E,,, = (l’ 1 Y-/x’ + q2X262,/(X 1 Vv12) ) l), (56) 
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and 

s,,, = (Z’ ) f- (I). 

The terms F+$‘,[, qsr, and Zp,, which must be added for axisymmetric perturbations 
are given in the Appendix, 6,,,, is the usual Kronecker symbol, and 6, is given by 
Eq. (16). The bracket notation is used to represent Fourier matrix elements, for 
example, 

G,E~ E -(l’ 1 .PA, ) Z) = - &$ e-i”‘XA,ei’e d@. (57) 

The procedure for constructing the matrix elements of Eq. (54) is straightforward 
and essentially follows [4]. We select a set of piecewise linear finite elements for the 
u,(w), m = 1, M and truncate the Fourier expansion at (I] < ]L I. Typically, M 2 50, 
L 5 20. We construct and invert G, the Fourrier representation of the operator -44, 
of Eq. (41), on each of an arbitrarily spaced set of magnetic surfaces used to 
represent the finite element radial expansion functions u,(v). Then G is found by 
matrix inversion. We can then compute the matrices W, Y, and 2 on each surface 
and perform the integrations over IC/ in Eqs. (54) and (55) by numerical quadratures. 
The eigenvalues of the generalized matrix problem of Eq. (53) are found by inverse 
iteration [29]. The representation of the perturbed vacuum potential energy V,,IMJM is 
essentially identical to that of [4]; the expressions in that work being modified only 
by a simple similarity transformation, I”,,, = (E’I einqs I I), arising from the 
generalization of the ignorable toroidal angle [. Naturally, T,,, = 6,,,, in PEST coor- 
dinates. 

4. NUMERICAL RESULTS 

The PEST 2 stability code, embodying the formulation of the last two sections, has 
developed through several stages. Beginning with PEST 1, the first version was 
restricted to PEST coordinates (Eq. (14)) and checked extensively against PEST 1. 
The considerable improvement in execution time and reduction in memory 
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requirements led to extensive application (on the CRAY-1) to the study of large n 
(-20) ballooning modes [ 1 l] and to the development of a special version of the code 
which can be usefully employed on a small computer (DEC KI-10). These early 
versions have now been rewritten to accept equilibrium quantities from an arbitrarily 
spaced radial mesh and to provide the option of rezoning this mesh to allow various 
nodes of the radial finite elements to coincide with the rational surfaces. In this 
section we present a variety of test calculations which demonstrate the accuracy and 
usefulness of the PEST 2 approach. 

4.1. Comparison with PEST 1 

A direct comparison of growth rates from PEST 1 and PEST 2 is not possible 
because of the choice of different normalizations in Eqs. (30) and (38), respectively. 
It is, of course, still possible to check the signature of 6W and this is reported in the 
next section. Here we present a set of comparison calculations performed after 
modifying the PEST 1 code to adopt the model normalization of Eq. (38). 

We consider the analytic, almost constant current, toroidal equilibrium of Eq. (27), 
which has been used previously for extensive comparison of stability codes [7]. For 
the equilibrium of Fig. 2, we illustrate in Table I the convergence versus L, (where we 
include all Fourier components (1) in the range -L < Z(L), for PEST 1 (modified) 
in column 1, for PEST 2 using PEST 1 coordinates in column 2, and for PEST 2 
using an equally spaced mesh in Y/27r and PEST(B,), Hamada( and equal arc 
length (0,) meshes in columns 3, 4, and 5, respectively. We have chosen to study an 
n = 1 external kink with a vacuum of infinite extent surrounding the plasma column 
because it emphasises the differences between the various calculations compared with 
an internal mode. The data presented for each value of L were obtained after 
extrapolating to infinity in the number of radial finite elements (using M = 24, 36, 
and 48). For all cases the equilibrium mesh employed 128 equally spaced B grid 
points and the matrix G,,, of Eq. (57) in PEST 2 was evaluated with -25 < Z, I’ < 25. 

Columns 1 and 2 represent stability calculations carried out with mapped 
equilibrium data located on identical meshes. The differences are due principally to 
the different representations of 5, the exact vanishing of V . 5 in PEST 2, and to the 
surface by surface elimination B x VW. 5 using G-’ of Eq. (57), rather than the 
global elimination which occurs in PEST 1 with the normalization of Eq. (30). The 
more rapid convergence in PEST 2 reflects this improvement in the representation. 

TABLE I 

PEST 2 

L PEST 1M wp, 0, *, 0 H 0 F 

5 -7.5046 -9.1110 -9.044 1 -9.4853 -9.938 1 
10 -9.3435 -9.4137 -9.4152 -9.4113 -9.4254 
12 -9.3807 -9.4135 -9.4160 -9.4113 -9.4125 
15 -9.3855 -9.4135 -9.4162 -9.4113 -9.409 1 

581/49/l-8 
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We note that halving the required number of Fourier components to get a reliable 
answer (which appears to be typical) results in the necessity of storing (3 x 2)’ = 36 
times fewer matrix elements since PEST 2 determines only one component of 5. The 
reduction in computer time is also significant since, although additional effort must 
be performed to invert G in PEST 2, this is usually small compared to the reduction 
in the total number of matrix elements to be computed and to the consequent 
reduction in the time required to determine the eigenvalues [7] (-L’). 

The differences between columns 2 and 3 reflect the dependence of PEST 2 on the 
w coordinate mesh. An equally spaced PEST 1 w (xl &/X2) coordinate mesh (in 
column 2) concentrates the finite-element representation nearer the plasma-vacuum 
interface than the I+V = ‘Y/2x system of column 3. Since the external modes have their 
maximum amplitude near the plasma surface, it is not surprising that column 2 gives 
a more unstable result with small 1. Internal modes, where the destabilizing terms are 
localized closer to the magnetic axis, are on the other hand better represented by the 
PEST 2 v/ mesh. In general, an accurate estimate of the growth rate in either case 
requires extrapolation to the limit in the number of radial finite elements as described 
in previous work. 

The final columns of Table I give a comparison of the convergence rates for these 
different 0 meshes. For this medium aspect ratio, low-/3 equilibrium, it is seen that 
the convergence in each case is quite rapid with the equal arc length 6 being slightly 
slower. Figure 2 indicates that both 13, and 0” coordinates give an improved 
resolution near the top/bottom of the D. We also note that, in this case, the direction 
of convergence is from the unstable side with both Hamada and equal arc length 
coordinates. This can occur computationally because discretization errors in the 
representation of the operator A; ’ can violate the variational character of the 
minimization of 6W. In this case, however, where the errors in A;’ are very small, 
the dominant cause for the absence of a lower bound is not related to this effect, but 
occurs because our treatment of 6 W in the vacuum region is not variational [ 41. 

We have mentioned that the choice of normalization followed here (Eq. (38)) 
results in nonphysical eigenfunctions when o2 # 0. Although the numerical solution 
of Eq. (53) determines only the component 5. VW, the other components can then 
easily be compued by direct substitution into the B x VW and B components of the 
Euler-Lagrange equations using Eqs. (A4) and (A9). We illustrate the behavior of 
the eigenfunction in Fig. 3, comparing it with the eigenfunction using the complete 
kinetic energy normalization computed from PEST 1. Plotted here are vectors 
representing the component of 5 in the poloidal plane. The enhancement of the pertur- 
bation near the plasma surface in Fig. 3b comes partially from the presence of the 
q = 2 surface which lies near the plasma-vacuum interface (qa = 2.4) and indicates 
that the B x Vyl. 5 and B . 5 components vary more rapidly than 5 . Vty in those 
regions. 

4.2. Calculation of Critical Parameters Corresponding to Marginal Stability 

We have described how the approach of this work allows an accurate calculation 
of the point of marginal stability because it is possible to follow the unstable mode 
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FIG. 3. Eigenfunction for the predominantly m = 3, n = 1 surface kink mode for the equilibrium of 
Fig. 2; (a) with complete kinetic energy normalization, Eq. (30); (b) with model normalization, Eq. (38). 

across the marginal point. In Fig. 4 we illustrate this point for a sequence of flux- 
conserving equilibria with pressure and safety factor profiles fitted to a set of data 
taken from the PLT experiment. In the notation of [ 121, the equilibria are circular 
(R/a = 3.3) with p(v) = p,,(l - w)~.’ and q(y) = 1.16(1 -0.04125~)-2.‘g. The 
equilibria were computed with the equilibrium code described in [ 191 using a 
rectangular 65 x 65 mesh. 

The stability of the sequence to the n = 3 internal ballooning mode was studied 
using both PEST 1 (open circles) and PEST 2 (crosses). The PEST 2 calculations 
were made with the PEST O-coordinate, and all data shown have been extrapolated 

I I I , I I , , , , , 

\\ 
Y 

‘\ 
‘0 

-0.016 ’ I ’ ’ ’ ’ 1 1 1 1 ’ ’ 
a.42 a44 0.46 a48 0.50 0.52 054 

0 

FIG. 4. Estimation of critical @ values (in %) (0) from PEST 1 and (X) from PEST 2. With PEST 2 
the ability to interpolate using values in the stable side of w2 = 0 improves the estimate. 
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to the limit in both the number of radial finite elements and in the number of Fourier 
modes in the 0 direction. 

Since the numerical value of the growth rate obtained with PEST 2 is in arbitrary 
units, we have normalized the values from PEST 2 to those of PEST 1 by multiplying 
each by the factor w# = O.Sl)/w~(~ = 0.5 1). For actual comparison with Fig. 4, 
w;(p = 0.5 1) = -0.4 12. 

A direct comparison of this type provides a useful check on the accuracy of 
previous calculations made with PEST 1. Although versions with greater resolution 
have been constructed for studies of the internal kink and for tilting modes in 
spheromaks, the version used here is typical and allowed a maximum of 48 radial 
finite elements. For values of /? 5 0.5 in this sequence this version could not give a 
reliable estimate of the growth rate and /I, was thus determined by extrapolation from 
growth rates with /I some distance away from the marginal point. For this case one 
would predict /Ii” y 0.46%, about 10% above the value given by PEST 2. 

Since, away from marginal stability, calculations such as those given in Section 4.1 
show that PEST 1 and PEST 2 agree well, it is reasonable to conclude that the 
presence of the shear Alfven and slow acoustic mode continua in PEST 1 can make 
such an extrapolation inaccurate. On the other hand the almost linear behavior of W* 
against /3 with PEST 2, even into the stable side, leaves little doubt as to the accuracy 
of this approach. The absence of any continuum (up to U* = ]D,]/r) allow W* to be 
an analytic function of p in the vicinity of w2 = 0. In contrast, even if it were prac- 
tical to follow the unstable ballooning mode into the continuum on the stable side 
with the approach of PEST 1, it would be almost certain that dw*/d/l would be 
discontinuous across w2 = 0 [24]. 

4.3. Choice of Coordinate System 

For tokamak equilibrium parameters of interest to present experiments and reactor 
designs, our experience with various choices of 0 does not allow us to make any 
strong statement about an optimal coordinate system. Even in the case of high-/3 
ballooning modes, the use of a global Fourier expansion in Eq. (52) demands a good 
representation of the equilibrium in the region near 0 = rc because, since ( Zj 1 z 0 in 
this region, insufficient numerical accuracy will prevent an accurate minimization of 
Q: (part of the first term in Eq. (31)) and hence underestimate (or stabilize) the 
growth rate. The best choice for 0 may, of course, be determined by the requirements 
for an accurate and efficient calculation of the toroidal equilibrium, or by the need to 
compute accurately various derivatives of the equilibrium metric. Since these issues 
are problem dependent, one of the values of allowing for an arbitrary Jacobian lies in 
the extra confidence in the results which comes from obtaining consistent growth 
rates from different coordinate systems. 

Because it distributes mesh points uniformly over the plasma surfaces, the equal 
arc 0 (S =X/a ]Vw]) is usually a good choice. For a small aspect ratio device like 
the spheromak [30], where the PEST 0 does not sample the region on the outboard 
side of the torus very well, an equal arc length system is indeed greatly superior. To 



IDEAL MHD STABILITY CALCULATIONS 111 

FIG. 5. (a) PEST, (b) equal arc, and (c) i/B* equally spaced (w, 0) coordinate meshes for a 
spheromak equilibrium. 

illustrate this we compare the convergence of the Fourier representation for four 
different coordinate systems for an 12 = 1 tilting mode in an equilibrium of the 
spheromak type. Figures 5a and b show equally spaced (v, 0) meshes for PEST and 
equal arc length coordinates. From Fig. 6, where we plot the computed growth rate 
squared versus the number of Fourier modes, we see that these coordinates bracket 
the convergence rates of the four systems chosen. The equal arc length system is 
rapidly convergent, with an error of only 0.2% of its final converged value with 
-4 < I < 4. Comparable accuracy with PEST coordinates requires approximately 
three times as many Fourier components. In Fig. 7 we show the radial variation of 

3.0 

(-“*I 

2.5 

FIG. 6. Convergence of growth rate squared versus number of Fourier components for (0) PEST, 
(0) Hamada, (A) l/B’, and (x) equal arc length coordinate systems for the spheromak equilibrium of 
Fig. 5. 
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FIG. 7. The v-dependence of different Fourier components in the unstable eigenfunction for the 
n = 1 tilting mode using (a) PEST and (b) equal arc length coordinate systems. 

the different Fourier modes for these two coordinate systems for the case L = 10, 
(-10 < I< 10) illustrating again that the tilting mode is well represented by the equal 
arc length coordinates system with only a few Fourier modes. The inadequacy of the 
0, mesh would be more pronounced at smaller aspect ratios. 

Results for two additional coordinate systems are shown in Fig. 6. A Hamada 
coordinate system converges slightly faster than PEST coordinates, but suffers similar 
problems in accurately representing the outboard side of the spheromak equilibrium. 
Finally we have briefly studied the system X CC l/B’, because of its usefulness in the 
representation of three-dimensional equilibrium fields [3 11. It can be seen from 
Fig. 5c that this choice approximates an orthogonal mesh near the plasma edge and 
PEST coordinates near the magnetic axis where X2B2 is nearly constant. In this case, 
where the minimizing contribution to 6W is not concentrated near the separatrix 
region, the convergence properties are very good. 

5. DISCUSSION 

In this paper we have described a numerical approach which represents a 
significant advance in our capability of determining the ideal MHD stability of 
axisymmetric toroidal confinement systems. The computational demands are signifi- 
cantly reduced from previous approaches, allowing the possibility of studying 
instabilities with much larger toroidal mode numbers. Improvements in the represen- 
tation of the displacement vector c, and the analytic elimination of two of its 
components give increased accuracy, while the ability to follow an unstable mode 
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across the point of marginal stability greatly enhances our confidence in the deter- 
mination of critical equilibrium quantities. 

In tokamak design optimization, PEST 2 is now used routinely in place of PEST 1, 
its principal shortcoming being the inability to produce physical growth rates and 
eigenfunctions. These could be of importance in the direct comparison with 
experiments, in the design of feedback systems (e.g., for axisymmetric instabilities), 
and in studies which demand a detailed knowledge of the stable ideal MHD spectrum 
(e.g., wave heating). In principle, however, the approach of this paper can be 
generalized to retain the magnetoacoustic branches of the spectrum by repeating the 
analysis described in the Appendix with the proper kinetic energy normalization. This 
results in a set of scalar Euler-Lagrange equations (similar to those for the diffuse 
pinch), whose Galerkin form involves the eigenvalue o* in a transcendental fashion. 
We hope to report on this approach in the future, solving the nonlinear eigenvalue 
problem by iteration in w*. 

Additional work must concentrate on the appropriate representation of 5 . VW near 
the rational surfaces. Although this can be of importance to some marginally unstable 
ideal MHD modes (e.g., the internal m = 1 kink), it is of critical importance to a 
boundary layer treatment of nonideal instabilities (e.g., the resistive tearing modes). 
We shall report on this aspect of linear stability theory in the future. 

APPENDIX: A SCALAR FORM OF 6W 

Here we repeat the principal steps followed in deriving the form of 6 W given in 
Eq. (39). In summary the procedure involves solving two components of the 
Euler-Lagrange equation corresponding to Eqs. (29), (31), and (38) to express r” and 
<* of Eq. (37) in terms of c* and a,<*. Substituting these expressions into the Vty 
component yields Eq. (39). 

The Euler-Lagrange equation is 

w*p .t + F(c) = 0, (Al) 

with 

F(c)=-Bx [Vx(Q+&Jxn)]--nJxn.(Q+{,Jxn) 

+ 2u ws ’ VW> + VW * 5)9 642) 

II = Vv/lVtyl, and &, z 5 . n. The model density tensor in Eq. (38) has been chosen so 
that B . p = B x VW. p = 0. Thus the B-component of Eq. (Al) is 

B.F=B.V(ypV.g)=O, 643) 

a magnetic differential equation which, when integrated with the appropriate 
solubility condition, yields 

v * 5 = (f-C * vw>‘/(n, (A4) 
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leading to the third term of Eq. (39). This term contributes only for axisymmetric 
(n = 0) perturbations. 

The other surface component of the Euler-Lagrange equation yields 

v . [(Q + &J x n) x VW] = 0, (4 

from which the remaining surface component of 5 can be eliminated. To do this we 
write, using Eq. (7), 

(I-nn).(Q+<,Jxn)=V,u+V,v, G46) 

where u is periodic in 0 and c and v is a many-valued function of position which 
satisfies 

A,v = 0, 647) 

and A, is the surface Laplacian operator defined in Eqs. (41) and (44). It is a two- 
dimensional elliptic operator in the surface variables 0 and C, so that Eq. (A7) has a 
nontrivial solution because the toroidal domain of A, is not simply connected. The v 
term contributes only when n = 0 and leads to 2cW& of Eq. (39). 

To determine u we take the divergence of Eq. (A6) giving (cf. Eq. (40)) 

A,u = -cP-‘P<, (A81 

an elliptic equation for u which can be solved using the Green’s function operator 
A;‘. Substituting this solution back into Eq. (A6) we find for all n # 0, 

Q + &J x n = Vyl(B . V<)/lVwl* - V,(A;‘Jp’PC;). (‘49) 

These terms lead directly to the first two terms t e r m s  t e r m s  Y, = 

(lpr) V(0 + v*), (Al 1) 

where v,(w, 0) and v,(w, 0) are periodic functions of 0 chosen so that 

V. (I-nn)*Yj=O, j= 1,2. (A14 
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It is easily seen that in the coordinate system of Section 2.2, u, = qd(ty, 0) and v2 
satisfies 

a,v, = (S Iv~12/x*)(~Iv~12/x2)-1 - 1. (‘413) 

Taking the scalar product of Eq. (A6) with Y, and Y,, adding, integrating over the 
magnetic surface, and using periodicity, we find two equations which determine I, 
and Z2. These are 

with 

and 

Lj(V> zj(W> = v,l(W> j= 1,2, (Al41 

J%(w) = v-/X2)9 L;(w) = (<P IVly12/X2)-’ (AW 

V(w) = 2wv-t/~* >, 

C(w) = -W(<‘fl IVwl'/~') + WW'P + gg')/~*) 

+ (z- VW ' vo(a,<>/x')](s Iv~12/x2)-1. (A161 

With Zj(w) determined from Eq. (A14), substitution into Eq. (AlO) completes the 
evaluation of the right-hand side of Eq. (A6) and the additional term can thus be 
added directly into the right-hand side of Eq. (A9), giving an expression for the first 
term of Eq. (31) which involves only r= 5 . VI+Y and its W-derivative. These additional 
n = 0 terms are given explicitly in Eq. (45). 

Grouped together, the n = 0 terms of Eq. (39) give the following contribution to 
the weak form, Eq. (54): 

with 

@I, = YPR,*,~R,,I&~ + g2W%&,IHoo + L,*,,L,,IF,‘, 

J% = YP%,R,,I&,, + g2H,*I&JH,,o + F,-,f *L,,lF,‘, 

Z;t, = ypS,*,t S,,/S,, + g2H,*,, Her/Ho, t F,;? *F,I’/Foo’, 

H,,, = (1’ I Y-/X2 Il), 

(‘417) 

L,,, = (I’ 1 [3-(X2p’ t gg’) t i(Z - l’)S VW * VO]/X’ 1 I), 

N,,, = (I’ I V-/x2) 10, 

F;,’ = (I’ I 3- I VvI*/X* I I), 

and R,,,, S,,, as given in Eq. (56). 
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